Analysis of variance of a non-standard experimental design

Ciro Velasco

November 1, 2024

Introduction

Brief introduction to experimental designs

Models

Model for the Factorial design Model for the Nested-Crossed design Model for the Control-Treatment design ANOVA table

SAS for the Crossed-Nested experimental data

ET, Species and Varieties dataset SAS for the analysis of the Crossed-Nested data Results

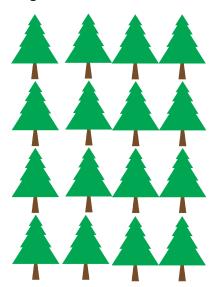
Conclusions

Reference

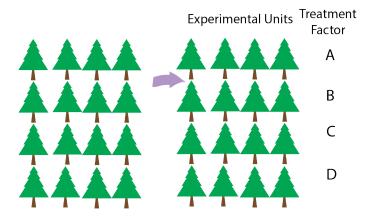
The following shows the structure of the dataset 1 of a CRD.

Rep	ET	Species	Variety	Quality
1	60	Fa	20-411	4.67
1	60	Fa	20-FA405	5.33
1	60	Fa	20-FA407	4.44
1	60	Fa	20-FA408	5.56
1	60	Fa	BARNOBLE	6.22
1	60	Fa	BARROBUSTO	6.89
1	60	Fa	BONFIRE	5.89

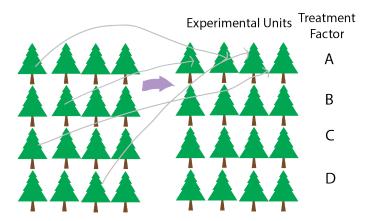
There are 16 seedlings



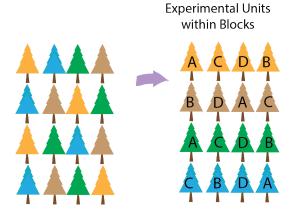
There are 16 seedlings, and one treatment factor with 4 levels



There are 16 seedlings, and one treatment factor with 4 levels, randomly assigned



Blocking factor

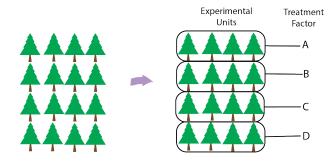


The three principles of experimental designs

We just introduced the three most important principles of experimental designs

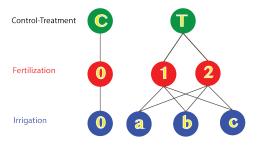
- Replication. To evaluate experimental variability
- Randomization. To avoid bias
- Blocking. To control for unwanted variability of the experimental units

Still another concept: Subsamples



Completely Crossed Fertilization Fertilization Fertilization Species Variety Variety Crossed-Nested Fertilization Fertilization Variety Variety Variety Variety Variety Variety Crossed-Nested

Extended Design

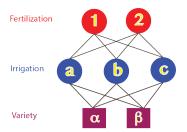


The general model for a full factorial with three treatment factors, which is denoted for short by $A \times B \times C$ is given by

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \gamma_k + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$
 (1)

That for our toy example above, *A*: Fertilization equal to 2 levels, *C*: Irrigation equal to three levels, and *C*: Variety equal to two levels.

Full 2 x 3 x 2 factorial



Notes

The model above is valid under the assumption that the experiment is a Completely Randomized Design (CRD). Though, this full factorial could have been allocated into any other design, such as:

- Randomized Complete Block Design or RCBD,
- Split-Split Plot Design or SSPD,
- Incomplete Block Design or IBD,
- ► Etc.

The model would be different. Models are generally design specific. All of them are very standard, since the listed designs are all standard.

Crossed Nested model

For a non-standard design such as the Crossed Nested, though very common, the model is

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \gamma_{kj} + (\alpha\gamma)_{ikj} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$
(2)

The nesting makes it imposible to estimate the canceled terms. The first becomes embedded into $(\beta\gamma)_{jk}$ and the second into $(\alpha\beta\gamma)_{ijk}$.

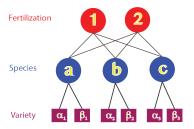
Note: γ is accompanied by the nesting factor all the times in nested experiments, ie. as in the model above, γ is always with β .

Thus the model is simplified as

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}.$$
 (3)

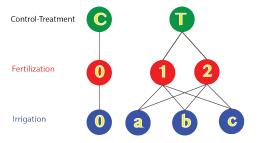
Which is the model for our toy example

Crossed-Nested



 α is for Fertilization, β is for Species, and γ for Variety. Note: Species is the NESTING treatment factor and Variety is the NESTED treatment factor. In the particular case of the Extended, the Control-Treatment design, the model

$$Y_{ijkl} = \mu + \alpha_i + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}. \tag{4}$$



Notice that in this case, the nesting factor is α , thus the other terms in the model are always accompanied by this term everywhere. There is no way to separate the main effects of β , γ nor the interaction effect $(\beta\gamma)$.

The extended designs can be

- Extended RCBD
- Extended SPD
- Extended IBD
- Etc.

For instance, the model for the extended RCBD is

$$Y_{hijkl} = \mu + \theta_h + \alpha_i + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\alpha\beta\gamma)_{ijk} + \epsilon_{hijkl}, \quad (5)$$

where θ symbolizes the blocking factor effect, which can be random or fixed.

ANOVA table for the Nested-Crossed

Let us assume that the sources of variation are the terms shown in the formula, and that for the nested factor we have total C levels, $C = C_1 + C_2 + \ldots + C_B$, where C_j is the number of levels of the nested factor for level j of factor B.

Source of	Degrees of
Variation	Freedom
α	A-1
β	B-1
$(\alpha\beta)$	$(A-1) \times (B-1)$
$(\beta\gamma)$	$(C_1-1)+(C_2-1)+\ldots+(C_B-1)=(C-B)$
$(\alpha\beta\gamma)$	$(A-1)\times(C-B)$
Error	$A \times C \times (R-1) - 1$
Total	$A \times C \times R - 1$

Where R is the number of replications.

Dataset 1

The following data were collected from a CRD with the following treatment factors (every treatment combination when existed was replicated four times)

- 1. ET: Evapotranspiration with three levels (60, 80 and 100%)
- 2. Species: with two levels (Fa and Pp)
- 3. Variety: with 17 varieties for Fa, and 19 for Pp.

This dataset has the structure similar to our first toy Crossed-Nested design above.

The following shows the structure of the dataset 1.

Rep	ET	Species	Variety	Quality
1	60	Fa	20-411	4.67
1	60	Fa	20-FA405	5.33
1	60	Fa	20-FA407	4.44
1	60	Fa	20-FA408	5.56
1	60	Fa	BARNOBLE	6.22
1	60	Fa	BARROBUSTO	6.89
1	60	Fa	BONFIRE	5.89

Again, the model for this dataset is

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}, \qquad (6)$$

where μ is the overall mean or in other contexts, the intercept, α represents the ET effect, β represents the Species effect, and γ the variety effect. The subscripts are as follows: i = 1, 2, 3 to rollover the three levels of ET. i = 1, 2 to run over the two levels for Species, and k = 1, ..., 17 or k = 1, ..., 19 for the varieties. And $l=1,\ldots,4$, the subscript for replications.

Often this model is expressed as

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + (\beta\gamma)_{k(j)} + (\alpha\beta\gamma)_{ik(j)} + \epsilon_{ijkl}, \quad (7)_{ijkl}$$

to more clearly specify that k runs on different indices depending on the value of i.

The ANOVA table of dataset 1 follows, note that C = 17 + 19 = 36, with R = 4.

	Degrees of
Variation	Freedom
ET	3 - 1 = 2
Species	2 - 1 = 1
ET imes Species	$(3-1) \times (2-1) = 2$
$Species \times Variety$	(17-1)+(19-1)=34
$ET \times Species \times Variety$	$(3-1)\times(17+19-2)=68$
Error	$3 \times 36 \times (4-1) - 1 = 324$
Total	$3\times36\times4-1=431$

SAS code for the Crossed-Nested data

In SAS, there are two ways to specify the same analysis.

```
    Proc GLIMMIX data=mqua plots=all;
class rep et species variety;
model quality = et|species|variety(species);
store one;
run;
```

```
    Proc GLIMMIX data=mqua plots=all;
class rep et species variety;
model quality = et species et×species species×variety
et×species×variety;
store one;
run;
```

The following shows the SAS output with results

Type III Tests of Fixed Effects				
Effect	Num DF		F Value	Pr > F
ET	2	324	583.76	<.0001
Species	1	324	10.00	0.0017
ET*Species	2	324	9.67	<.0001
Species*Variety	34	324	1.15	0.2699
ET*Species*Variety	68	324	1.06	0.3712

What follows is to investigate the two factor interaction $Species \times Variety$, using the following Postprocessing procedure in SAS:

```
Proc PLM restore=one;
slice et*species/sliceby = et linestable adjust=tukey;
effectplot interaction(sliceby=species);
run:
```

PLM results

The following summarizes what is obtained from Proc PLM, in particular from invoking the slice analysis.

Tukey-Kramer Grouping for ET*Species Least Squares Means Slice (Alpha=0.05)				
LS-means with the same letter are not significantly different.				
Slice	Species	Estimate		
ET 60	Pp	5.9898	Α	
ET 60				
ET 60	Fa	5.4673	В	

Tukey-Kramer Grouping for ET*Species Least Squares Means Slice (Alpha=0.05)				
LS-means with the same letter are not significantly different.				
Slice	Species	Estimate		
ET 80	Pp	7.3684	Α	
ET 80				
ET 80	Fa	7.1487	В	

Tukey-Kramer Grouping for ET*Species Least Squares Means Slice (Alpha=0.05)				
LS-means with the same letter are not significantly different.				
Slice	Species	Estimate		
ET 100	Fa	8.4052 A		
ET 100		Α		
ET 100	Pp	8.2558 A		

Conclusions

- Standard designs can be extended to accommodate more complicated experimental layouts
- ► The common design that has control as an additional factor in the experiments can be analyzed using the crossed-nested model
- SAS is an useful tool to analyze this and other more complicated designs.
- The crossed-nested designs can be extended to accommodate repeated measurements, though more interesting model can be used for this type of data.

References

- Hinkelmann, Klauss and Oscar Kempthorne (2005). Design and Analysis of Experiments: Advanced Experimental Design. Wiley Series in Probability and Statistics. Vol 1.
- Piepho, H.P., Williams, E.R., and Fleck, M. (2006). A Note on the Analysis of Designed Experiments with Complex Treatment Structure. HortScience HortSci, 41(2), 446-452. Retrieved May 20, 2024, from https://doi.org/10.21273/HORTSCI.41.2.446